О роли гемореологических нарушений в развитии венозных тромбоэмболических осложнений у онкологических пациентов

Марков М. А.
Ройтман Е.В.
Колесникова И.М.
Давыдкин И.Л.
Козлова Н.С.
Лимарева Л.В.
Румянцев С.А.
Венозный тромбоэмболизм — кризис общественного здоровья

ТРОМБОЗ И ЗАБОЛЕВАЕМОСТЬ РАКОМ

РАК
- ВТЭО (ТГВ, ТЭЛА или КАТ)
- От 4% до 20% раковых пациентов
- ВТЭО выявляется при аутопсии у 50% раковых пациентов

ВТЭО
- ВТЭО встречается у 20% больных с активным cancer
- от 4% до 12% пациентов с идиопатическим ВТЭО получают основной диагноз «cancer»

ВТЭО - вторая наиболее распространенная причина смерти (после метастазов)

МЕХАНИЗМ РАЗВИТИЯ ТРОМБОЗА ПРИ РАКЕ

IL, interleukin; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
ФАКТОРЫ РИСКА ВТЭО ПРИ РАКЕ

• Связанные с пациентом
 – Пожилой возраст (преимущественно >65 лет)
 – Раса (Black > Asian)
 – Ожирение
 – Сопутствующие заболевания
 – Первичная история ВТЭО
 – Врожденные протромботические полиморфизмы
 – Беременность

• Связанные с терапией
 – Недавние крупные операции
 – Текущая госпитализация
 – Химиотерапия
 – ЦВК
 – Гормоны
 – Недавнее или имеющееся применения антиангиогенных препаратов (thalidomide, lenalidomide, bevacizumab)

• Связанные с онкозаболеванием
 – Первичная локализация опухоли (особенно, панкреатическая, ЖКТ, мозга, легких, гинекологическая, почечная, гематологическая)
 – Развитие в период от 3 до 6 мес. после постановки диагноза
 – Осложнения, связанные с метастазами

Катетер-ассоциированные тромбозы

Часто тромб возникает в отдалении от точки установки катетера

Муральный тромбоз, распространяющийся в просвет сосуда

Дисфункция катетера без мурального тромбоза
Катетер-ассоциированные тромбозы

Установка катетера ➔ Травма сосудистой стенки ➔ Образование тромба ➔ Действие тромбогененных факторов (местных или системных) ➔ Рост тромба ➔ Потеря центрального венозного доступа: в 10% случаев

Частота симптоматических ВТЭО: 0% - 28%
ТЭЛА как осложнение КАТ: 10% - 15%

ПРИЧИНЫ ТРОМБОЗА

ГИПЕРКОАГУЛЯЦИЯ

НАРУШЕНИЕ МОРФОЛОГИЧЕСКОЙ И ФУНКЦИОНАЛЬНОЙ ЦЕЛОСТНОСТИ СОСУДИСТОЙ СТЕНКИ

ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ПОТОКА КРОВИ
ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ ПРИ НЕКОТОРЫХ ОНКОГЕМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

Колесникова И.М.
Румянцев С.А.
ГБОУ ВПО РНИМУ им. Н.И. Пирогова
Минздрава России, Москва

Давыдкин И.Л.
Козлова Н.С.
Лимарева Л.В.
ГБОУ ВПО СамГМУ
Минздрава России, Самара

Марков М.А.
ФФМ МГУ им. М.Ю.Ломоносова,
Москва

Ройтман Е.В.
Тромботические события и повышенная концентрация BNP

Тромботические события
Пациенты с острым лимфобластным лейкозом – 40%;
Пациенты с истинной поликлипемией - 38%

повышенная концентрация BNP (> 80 нг/л; от 82 до 208 нг/л) выявлена у 18% пациентов без признаков почечной недостаточности.

?- субклиническая бессимптомная кардиальная дисфункция -?
→ действующий фактор риска ВТЭО

В кровотоке происходит аксиальная миграция эритроцитов, а у стенки сосуда располагается тонкий слой плазмы с тромбоцитами. Сдвиговые силы в этом регионе максимальны, что является необходимым для активации тромбоцитов. Увеличение среднего объема агрегатов снижает ширину плазматической зоны и тем самым приводит к увеличению вероятности активации тромбоцитов, контакта между тромбоцитами и их взаимодействия с сосудистой стенкой, особенно на фоне повышенного количества тромбоцитов. В частности, эти эффекты увеличивают вероятность инициирования тромбообразования при ИП.

ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ ПРИ НЕКОТОРЫХ ОНКОГЕМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

ПАЦИЕНТЫ

Пациенты с истинной полицитемией – 26 чел.
(Самарский областной гематологический центр на базе отделения гематологии Клиник Самарского государственного медицинского университета)

Пациенты с острым лимфобластным лейкозом – 48 чел.
(ФГБУ ФНКЦ ДГОИ им. Д.Рогачёва Минздрава России, Москва)

Доноры (группа сравнения) – 67 чел.
(ФГБУ ФНКЦ ДГОИ им. Д.Рогачёва Минздрава России, Москва)

Гемореологические исследования проведены в соответствии с «Ярославским соглашением» (2000)
ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ ПРИ НЕКОТОРЫХ ОНКОГЕМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

МАТЕРИАЛ ИССЛЕДОВАНИЯ

Цельная венозная кровь, стабилизированная раствором гепарина. Пробы крови отбирали при помощи вакуумных систем S-Monovette с калий-сбалансированным литий-гепарином (Sarstedt, Германия).
Для получения плазмы пробы центрифугировали при 3000 об/мин в течение 10 минут при комнатной температуре.

МЕТОДЫ ИССЛЕДОВАНИЯ

Величина гематокрита
Количество эритроцитов и их индексы (MCV, MCH, MCHC)
Количество тромбоцитов,
Количество лейкоцитов
Концентрация фибриногена
Скорость оседания эритроцитов

ГЕМОРЕОЛОГИЧЕСКИЙ АНАЛИЗ

Ротационный вискозиметр АКР-2 (Россия)

Вязкость плазмы при скорости сдвига 250с⁻¹
Вязкость крови \(\eta \) в диапазоне скоростей сдвига \(\gamma \) от 5 до 300 с⁻¹

Особенность анализа

Запись вискозиметрической кривой проводили при последовательном снижении/увеличении скоростей сдвига (сначала при уменьшении скоростей сдвига от 300 до 5с⁻¹, затем, не извлекая образец из прибора, скорость сдвига увеличивали от 5 до 300с⁻¹).
Поправка на величину гематокрита (40%) для значений вязкости крови

Относительная вязкость крови (ОВК)
Индекс агрегации эритроцитов (ИАЭ)
Индекс деформируемости эритроцитов (ИДЭ)
Кессоновская вязкость (К),
Предел текучести (τ₀)
Значения напряжения сдвига (τ)

В.А.Левтон, С.А.Регирер, Н.Х.Шадрина. Рейология крови. М.: Медицина. 1982. с.75-76
Современные методы оценки реологических свойств крови (под ред. Фирсова Н.Н.) //
М., РГМУ, 2009. С.28
ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ ПРИ НЕКОТОРЫХ ОНКОГЕМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

СРАВНЕНИЕ ВЕЛИЧИН ВЯЗКОСТИ КРОВИ

Направление измерения 300 $\rightarrow 5$ c$^{-1}$
При низких $\dot{\gamma}$: ИП > Доноры > ОЛЛ
При средних $\dot{\gamma}$: ИП > Доноры \approx ОЛЛ
При высоких $\dot{\gamma}$: ИП > Доноры \approx ОЛЛ

Направление измерения 5 $\rightarrow 300$ c$^{-1}$
При низких $\dot{\gamma}$: ИП > Доноры > ОЛЛ
При средних $\dot{\gamma}$: ИП > Доноры > ОЛЛ
При высоких $\dot{\gamma}$: ИП > Доноры \approx ОЛЛ
ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ ПРИ НЕКОТОРЫХ ОНКОГЕМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

СРАВНЕНИЕ ВЕЛИЧИН ВЯЗКОСТИ КРОВИ в зависимости от направления измерения

Доноры

ОЛЛ

ИП

РАЗЛИЧИЕ ВЕЛИЧИН ВЯЗКОСТИ КРОВИ вследствие последовательного снижения / повышения γ
ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ ПРИ НЕКОТОРЫХ ОНКОГЕМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

Различие агрегации и деформируемости эритроцитов (внутри и между групп)

<table>
<thead>
<tr>
<th>Группа</th>
<th>Доноры</th>
<th>ОЛЛ</th>
<th>ИП</th>
</tr>
</thead>
<tbody>
<tr>
<td>Направление изменения (\dot{\gamma}), с^{-1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300→5</td>
<td>5→300</td>
<td>300→5</td>
<td>5→300</td>
</tr>
<tr>
<td>Индекс агрегации эритроцитов, ИАЭ</td>
<td>1,70</td>
<td>1,73</td>
<td>1,78 †</td>
</tr>
<tr>
<td>Индекс деформируемости эритроцитов, ИДЭ</td>
<td>1,09</td>
<td>1,07</td>
<td>1,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,086</td>
</tr>
</tbody>
</table>

* - различия достоверны внутри группы, \(p < 0,05 \); † - достоверные отличия от контрольной группы, \(p < 0,05 \)
Особенности реологического поведения крови при некоторых онкогематологических заболеваниях

Показатели, вошедшие в уравнения регрессии
(при условии $P \leq 0.05$ и $R^2_{adj} \rightarrow \max$ и ≥ 0.50)

для η_i, IAЭ и IDЭ

Вязкость крови, мПа·с
0 50 100 150 200 250 300

ОЛЛ

ИП

MCV, WBC, MCHC, FG
WBC, MCH, MCV, FG
MCV, [RBC + WBC]
RBC, WBC, MCHC, MCH, MCV
ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ ПРИ НЕКОТОРЫХ ОНКОГЕМАТОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

РЕЗЮМЕ 1.

ОСОБЕННОСТИ РЕОЛОГИЧЕСКОГО ПОВЕДЕНИЯ КРОВИ…

У пациентов с ОЛЛ
1. Эритроцитарные агрегаты обладают низкой гидродинамической устойчивостью и распадаются практически до единичных клеток при увеличении скорости сдвига.
2. Дезагрегация эритроцитов (точнее, эритроцит-клеточных образований), является преобладающей тенденцией в процессе обратимого структурировании крови у пациентов с ОЛЛ, а разрушение эритроцитарных агрегатов происходит почти до единичных клеток.
3. Эритроциты при ОЛЛ обладают нормальной деформируемостью

У пациентов с ИП
1. При снижении скорости сдвига процесс эритроцитарного агрегатообразования при ИП начинается позже, чем у доноров, но происходит более интенсивно.
2. Последующая дезагрегация эритроцитов при увеличении скорости сдвига, напротив, затруднена.
3. Существенно более высокий ИДЭ свидетельствует как о наличии даже при высоких скоростях сдвига неразрушенных эритроцитарных агрегатов (т.е. более гидродинамически устойчивых), так и об общем ухудшении деформируемости эритроцитов у таких больных.
Появление разницы значений, $\Delta \eta_{(i-j)}$, предполагает, что полностью обратимого структурирования крови у пациентов не наблюдается.

Отдельным действующим фактором риска ВТЭО у онкогематологических пациентов может быть субклиническая бессимптомная кардиальная дисфункция.

Доказано формирование не-гемостазиологических, а собственно гемореологических условий для образования тромбов у пациентов с ОЛЛ и ИП.

Формирование не-гемостазиологических условий для образования тромбов делает гемореологическую терапию привлекательной для включения в комплекс стандартных анти trombotических мероприятий. Однако выбор средств и методов требует дополнительных исследований.
СПАСИБО ЗА ВНИМАНИЕ