Биологическое значение тромбоцитов человека и перспективы их использования в неотложной медицине и трансплантологии

Максим Сергеевич Макаров, канд. биол. наук

Москва, 2016
Тромбоциты человека – высокодифференцированные безъядерные клетки с уникальным строением и функциями

Общий вид тромбоцитов

Световая микроскопия: неокрашенные тромбоциты
Световая микроскопия: окраска по Романовскому
Электронная микроскопия
Метод оценки биологической полноценности тромбоцитов

Анализ качества тромбоцитов ТК до и после криоконсервирования проводили с помощью оригинального метода оценки морфофункционального статуса тромбоцитов человека (Патент РФ №2485502, авт. М.Ш. Хубутия, М.С. Макаров, В.Б. Хватов и др.)

В основе метода лежит анализ витально (прижизненно) окрашенных тромбоцитов во флюоресцентном микроскопе

Общая схема анализа
Морфология витально окрашенных тромбоцитов человека с разной биологической полноценностью

ТРОМБОЦИТЫ

Неповрежденные, функционально пригодные клетки; устойчивые к ДМСО

Активированные клетки, функционально непригодные

Неповрежденные, функционально непригодные клетки

Поврежденные (деградирующие), функционально непригодные клетки
Адгезивная активность — важный маркер функциональной полноценности тромбоцитов

Одной из отличительных черт биологически полноценных тромбоцитов человека является наличие у них адгезивной активности.

Показано, что процесс формирования тромба начинается с адгезии тромбоцитов в области повреждения сосуда, их активации и вовлечения в этот процесс других тромбоцитов, которые в результате приводят к формированию тромбоцитарного агрегата. Адгезия тромбоцитов неразрывно связана с выбросом за пределы клеток содержимого секреторных везикул (гранул), содержащих с одной стороны, факторы, стимулирующие гемостаз (Ca$^{2+}$, АДФ, другие тромбоцит-активирующие факторы), с другой — вещества, способствующие дальнейшим процессам репарации и регенерации поврежденных тканей.

Электронная сканирующая микроскопия
(Egidi M.G., D’Alessandro A., Mandarello G., Zolla L., 2010)

Флуоресцентная микроскопия — витальное окрашивание
(Макаров М.С. и др., 2012)
Причины возможного нарушения адгезивной активности тромбоцитов в неотложной медицине

<table>
<thead>
<tr>
<th>Физические факторы, применяемые в процессе лечения</th>
<th>Препараты-антиагреганты</th>
</tr>
</thead>
<tbody>
<tr>
<td>• искусственное кровообращение</td>
<td>• снижают функциональную активность тромбоцитов без их разрушения</td>
</tr>
<tr>
<td>• воздействие КВЧ-излучения</td>
<td>• у разных пациентов чувствительность тромбоцитов к антиагрегантам может сильно варьировать</td>
</tr>
<tr>
<td>• гемодиализ</td>
<td></td>
</tr>
</tbody>
</table>

В настоящее время в качестве перспективного переносчика лекарственных препаратов рассматривают наночастицы:

- оксида кремния (SiO₂)
- углеродные нанотрубки
- поли-амид-аминовые дендримеры

Однако при контакте с этими наночастицами наблюдается спонтанная активация тромбоцитов.
Избыточная адгезивная активность тромбоцитов – причина многих патологий

Инфаркт миокарда
Инсульт
Атеросклероз
- адгезия тромбоцитов на фибрине и коллагене

Болезнь Альцгеймера
- адгезия тромбоцитов на скоплениях бета-амилоида

Злокачественные образования (опухоль яичника, меланома)
- адгезия тромбоцитов на коллагене и на поверхности опухолевых клеток

Искусственные имплантанты
- тромбоциты человека обладают способностью к адгезии на органических полимерах (поливинил, полиэстер, полипропилен и т.д.), многих металлических конструкциях

+ адгезивная активность тромбоцитов спонтанно возникает при контакте с наночастицами
- оксида кремния (SiO₂)
- золота (исп. в кардиохирургии)
- квантовыми точками (CdSe и CdTe)
- углеродными нанотрубками
- крупными поли-амид-аминоными дендримерами
Наиболее известные компоненты гранул тромбоцитов и их биологический эффект (Golebiewska, Poole, 2014; Lannan et al, 2015)

Активация тромбоцитов
АДФ, АТФ, Mg²⁺, Ca²⁺, гистамин, пирофосфат
Лизомные ферменты кислые фосфатазы, металлопротеазы
Реорганизация сгустка

Фиброз тканей
Серотонин
Регенерация печени

Факторы роста сосудов
VEGF, VGF, CXCL12
Анти-ангиогенные факторы
ангистатин, эндостатин, тромбоспондин

Фазы гемостаза
Гемостаз
Тромбоз
Рестеноз

Созревание лимфоцитов
Сталильность сосудов
Ангиогенез в опухолях

Хемокины и цитокины
CXCL7, CCL5, IL1/6/8

Ростовые факторы
PDGF, EGF, IGF1

Активация лейкоцитов
Нарушение работы легких

Тромбоз
Рестеноз

Молекулы адгезии
FGA, FGB, vWF, фибриноген, фибронектин, P-селектин

Гипертрофия миокарда
Метаастазирование и рост опухолей
Репарация миокарда

Необходимо отметить, что содержимое гранул стимулирует физиологические (зеленые поля) и патофизиологические (красные поля) процессы; некоторые из процессов могут обладать как позитивным, так и негативным эффектом (двухцветные поля).
Часть тромбоцитарных гранул выделяется в виде целых везикул - микрочастиц

Характеристика микрочастиц тромбоцитов - являются наиболее распространенным типом микрочастиц в циркулирующей крови и составляют 80-90% от их общего количества

- представляют собой везикулы диаметром от 0,1 до 1 мкм с фенотипом CD31+CD41+/CD42b+

- выделяются путем экзоцитоза из мегакариоцитов в костном мозгу или образуются в процессе дегрануляции активированных тромбоцитов

Функции микрочастиц тромбоцитов

• стимуляция свертывания крови в зоне повреждения сосудов;
• стимуляция репарации и регенерации;
• запуск воспалительной реакции;
• расщепление межклеточного матрикса;
• нейтрализация NO;
• образование активных форм кислорода;
• передача межклеточных сигналов

а – фазово-контрастная микроскопия;
б, в – электронная микроскопия
г – флуоресцентная микроскопия: окрашивание тромбоцитов витальным красителем
Патофизиологическая роль тромбоцитарных микрочастиц (ТМч) при сепсисе

Избыточная активность секретируемой фосфолипазы А2 в составе ТМч

Расщепление фосфолипидов плазматической мембраны эндотелия, снижение ее общего отрицательного заряда

Адгезия лейкоцитов, тромбоцитов и ТМч на эндотелии

Блокаторы NO-синтазы

Неконтролируемый синтез оксида азота в ТМч

Избыточная активность NADPH-оксигеназы в составе ТМч

Накопление активных форм кислорода

Супероксид-дисмутаза и ее аналоги

Разрушение гликокаликса лизосомальными ферментами ТМч

Окислительный стресс, апоптоз лейкоцитов, клеток эндотелия, солидных органов, миокарда
Показания к переливанию концентратов тромбоцитов

• спонтанная мелкоточечная кровоточивость или локальные кровотечения при уровне тромбоцитов менее 20·10⁹/л, обусловленном депрессией кроветворения;

• гипокоагуляционная фаза ДВС синдрома;

• острая массивная кровопотеря, сопровождающаяся снижением уровня тромбоцитов менее 100·10⁹/л

[Инструкция по применению компонентов крови, утверждена приказом Минздрава РФ №363 от 25.11.2002].
<table>
<thead>
<tr>
<th>Исследуемые группы</th>
<th>Анализируемые параметры тромбоцитов человека</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Содержание тромбоцитов с гранулами</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Референтные значения нормы (здоровые люди)</td>
<td>35-75</td>
</tr>
<tr>
<td>Пациенты с клинически выраженным ГС II-III степени</td>
<td>0-9</td>
</tr>
<tr>
<td>Больные с тромботическими осложнениями</td>
<td>85-95</td>
</tr>
</tbody>
</table>
Характеристика аферезных тромбоконцентратов

• Среди методик заготовки тромбоцитных концентратов (ТК) наиболее эффективной считается процедура аппаратного афереза.

• Общий объем дозы аферезного ТК содержит не менее 200×10⁹ тромбоцитов в 200-300 мл плазмы с примесью эритроцитов менее 1×10⁹ и лейкоцитов до 0,6×10⁹ (Технический Регламент о требованиях к безопасности крови и ее компонентов, 2010).

• Одна стандартная доза аферезного ТК содержит 95–200×10⁹ структурно и функционально полноценных клеток, при этом морфофункциональные характеристики тромбоцитов в аферезных ТК значительно не меняются по сравнению с исходной кровью доноров.

Недостатки
- короткий срок хранения ТК: 5 суток при 20-22°C согласно техническому регламенту; резкое снижение уровня тромбоцитов с гранулами наступает уже через 3 суток хранения
- невозможность карантинизации ТК и риск инфицирования гемотрансмиссивными инфекциями из-за серонегативного окна.
Тромбоциты ТК обладают высокой неоднородностью по биологической полноценности тромбоцитов

Содержание тромбоцитов с гранулами в крови доноров

Сохранность тромбоцитов с гранулами после криоконсервирования ТК с 5-6% ДМСО
Пути возможного использования тромбоцитов в трансплантологии

Инъекционное введение

Тромбоциты: БоТП, Тромбоконцентрат, Тромбоциты в бесплазменной среде

Использование тромбоцитарного геля

Выделение факторов роста и дифференцировки

Создание комбинированных биотрансплантатов

Создание клеточно-тканевых конструкций
Рост-стимулирующие свойства тромбоцитов человека

Пролиферативная активность мезенхимальных стволовых клеток, выделенных из костного мозга (A) и жировой ткани (B) в зависимости от концентрации БоТП в среде (Amable et al, 2014).

Рост фибробластов человека линии M-22 в бессывороточной среде (4-е сутки посева):
A – контроль
B – 150 пг/мл PDGF-BB из БоТП (Макаров и др., 2013)
Использование тромбоцитарного геля в медицине

БоТП в виде геля эффективно стимулирует остеогенез
- в зубных альвеолах после экстракции зуба
- при переломах челюстных костей
- ускоряет рост кости при диабетических переломах
- при диабетической остеоартропатии и других дефектах губчатой кости

Тромбоцитарный гель эффективен при лечении хронических трофических ран

Может быть использован в качестве компонента комбинированных биотрансплантатов

Общий вид готового геля

Остеогенез в присутствие (А) и в отсутствие (Б) тромбоцитарного геля (Bernuzzi et al, 2010)

Лечение трофической раны: А – перед лечением, Б – во время лечения, В – через 8 недель (Оболенский и др., 2013)
Затруднения, возникающие при использовании тромбоцитов человека в трансплантологии

• Риск развития воспалительной реакции, трансформации или гибели диплоидных клеток как in vitro, так и in vivo

• Отсутствие расчетов адекватной дозы БоТП / ее компонентов / биологически полноценных тромбоцитов

• Отсутствие анализа биологической полноценности тромбоцитов, используемых в трансплантологии

• Возможность потери/вымывания значительной части биологически активных компонентов тромбоцитов
Выводы

• Тромбоциты человека обладают выраженной полифункциональностью, которая может быть использована для решения многих практических задач.

• Морфофакториальный анализ тромбоцитов имеет большое значение в клинико-диагностической практике, производственной трансфузиологии, биотехнологии, трансплантологии, регенераторной медицине.

• Актуальной проблемой остается анализ взаимодействия тромбоцитов человека с различными искусственными изделиями и субстратами, а также исследование новых способов использования тромбоцитов и их компонентов в медицинской практике.
Благодарим за внимание!